
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2559

Design of multiplier using regular partial

products.

Bipin
1
, Ms. Sakshi

2

M-Tech VLSI Design Thapar University, Patiala, India
1

Assistant Professor, ECE Department, Thapar University, Patiala, India
2

Abstract: The conventional Modified Booth Encoding (MBE) generates n/2+1 rows instead of n/2 rows and also

irregular partial product array because of the extra partial product bit at the LSB position of each partial product row. In

this brief, a simple approach is proposed to generate n/2 partial product rows along with a regular partial product arrays

and negligible overhead, thereby lowering the complexity of partial product and reducing the area and power of MBE

multipliers. The proposed approach can also be utilized to regularize the partial product array of MBE multipliers along

with the issue of disposal of the negative partial products efficiently by computing the 2’s complement thereby

avoiding the additional adder for adding 1 and generation of long carry chain. The proposed mechanism also continues

to support the concept of reducing the partial product from n/2 +1 partial products achieved via modified booths

algorithm to n/2.In this direct two’s complement method has been used to reduce partial product rows from n/2+1 to

n/2.Implementation results demonstrate that the proposed MBE multipliers with a regular partial product array really

achieve significant improvement in area and power consumption when compared with conventional MBE multipliers.

Here different multipliers have been designed and compared. These multipliers have been designed with the help of

Verilog, simulated on Modelsim SE 6.3f and synthesized on Xilinx FPGA Spartan 3E xc3s500E, that helps in

comparing their area, power and delay.

Keywords: DSP, MBE, PP, VLSI

I. INTRODUCTION

Enhancing the processing performance and reducing the

power dissipation of the systems are the most important

design challenges for multimedia and digital signal

processing (DSP) applications, in which multipliers

frequently dominate the system’s performance and power

dissipation. Multipliers are widely used in DSP and

multimedia applications. Hence modifications are made to

the multiplier architecture to achieve all those

requirements. Multipliers have large area, long latency and

consume considerable power. Therefore high speed

multiplier design has been an important part in high speed

VLSI system design. Multiplication consists of three

major steps:-

1) Generation of partial products.

2) Summing up all partial products until only two rows

remain.

3) Adding the remaining two rows of partial products by

using a carry propagation adder (eg. Ripple Carry

Adder).

There are number of technique had been developed in the

past for these three steps to enhance the performance of

multiplier. In this brief we will concentrate on first step i.e.

generation of partial product to improve speed, area and

power. Booth’s algorithm is considered to be best known

algorithm for generation of the partial products [2], [3].

Booth’s algorithm deals with both sign and unsigned

number. In order to improve the speed and performance of

the system a new technique was introduced known as

Modified Booth’s Algorithm. Modified Radix -4 Booth’s

Algorithm is made use for fast multiplication. The salient

features of this algorithm are:

• Only n /2 clock cycles are needed for n-bit multiplication

as compared to n clock cycles in Booth’s algorithm.

• Isolated 0/ 1 are handled efficiently.

Fig 1 Conventional MBE partial product array for 8*8

 bit multiplication

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2560

In order to generate more regular partial product some

approaches [4], [5] have been proposed, as shown in Fig.

1(b) and 1(c), for the MBE multipliers. Thus, the area,
delay, and power consumption of the reduction tree, as

well as the whole MBE multiplier can be reduced.

The proposed work will combine the method proposed in

[4] to generate a parallelogram-shaped partial product

array and reduce n/2+1 partial product rows to n/2 by the

method proposed in [1]. More regular partial product array

and fewer partial product rows result in a small and fast

reduction tree, so that the area, delay, and power of MBE

multipliers can further be reduced. Elimination of last

partial product row will save an extra adder circuitry to

add last two partial product rows results in improvement in

area, power and delay.

II. MODIFIED BOOTH ALGORITHM

As discussed above MBE results into an extra partial

product row, this additional partial product row is required

to take care of the negative encoding ,which would hence,

require more adder circuitry while implementing and also

affect the speed efficiency of the system. The booth

encoding algorithm is a bit-pair encoding algorithm that

generates partial products which are multiples of the

multiplicand. The booth algorithm shifts and/or

complements the multiplicand (a operand) based on the bit

patterns of the multiplier (b operand). Essentially, three

multiplier bits [b (i+1), b (i) and b (i-1)] are encoded into

nine bits that are used to select multiples of the

multiplicand {-2a, -a, 0, +a, +2a}. The three multiplier bits

consist of a new bit pair [b (i+1), b (i)] and the leftmost bit

from the previously encoded bit pair [b (i-1)] as shown in

figure 2.1.

Fig. 2.1: Recoding in Radix 4

Recoding scheme of Modified Booth Algorithm can be

easily explained by Table 1 proposed by booth in 1951.

 Table 1

MBE Table

b2i+1 b2i b2i+1 operation neg 2a a

0 0 0 0 0 0 0

0 0 1 a 0 0 1

0 1 0 a 0 0 1

0 1 1 2a 0 1 0

1 0 0 -2a 1 1 0

1 0 1 -a 1 0 1

1 1 0 -a 1 0 1

1 1 1 0 0 0 0

Here neg bit represent the negative encoding. 2a can be

achieved by left shifting multiplicand by one bit. There

are, number of sign extension schemes [6]–[7] have been

proposed to prevent extending up the sign bit of each row

to the (2n − 1)
th

 bit position.

III. PROPOSED TECHNIQUE

Fig. 1(a) illustrates the MBE partial product array for an 8

× 8 multiplier with a sign extension prevention procedure,

where si represents sign bit of the partial product row

PPi, is is the complement of si, and b_p represents the bit

position. As can be Seen in Fig. 1(a), MBE generates

n/2+1 partial product rows where last partial product row

represent negi bits which results in an irregular partial

product array and one additional partial product row. To

get more regular structure, least significant part of each

partial product row PPi i.e.ppi0 , is added with negi in

advance and obtained a new least significant bit τi0 and

carry ci [4] . In proposed multiplier addition of ppi0 and

negi bit continue up to 3 partial product rows shown in fig.

3.1 and a direct method to find 2’s complement [1] is

implemented on last two partial product rows. Hardware

realization of the 2’s compliment becomes critical part due

to the need of arithmetic addition of plus 1 which many

times cause propagation of carry from LSB to MSB. So a

new technique has been proposed in next section.

Fig. 3.1 Partial Product after adding ppi0 and negi

A. How to find 2’s complement

Basic mechanism to find 2’s complement is to firstly take

the 1’s complement and then adding 1, which is an

inefficient operation because of generation of long carry

chain. So in order to enhance the performance of

multiplier efficient disposal system of adding 1 is needed.

There are number of techniques available discussed below.

(i)The first and obvious method is to enhance the

capability and performance of the adder used for the

addition of 1 while calculating the 2’s complement

whenever needed. But this method is not efficient in terms

of additional hardware requirement and extra time

required.

(ii)One method is where all the bits after the rightmost “1”

in the word are complemented but all the other bits are

unchanged. An extended version of this algorithm was

proposed in [5].

(iii)Another disposal method was suggested by Zheng and

other co-authors in 2010 keeping the basic principle of not

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2561

deterring the value of the partial products. They partition

the partial products into pp and Cin such that PP= pp + C-

in, such that positive PPs will be PP=pp and Cin=0 [3].

(iv) Consider a 8 bit number A, to calculate 2’s

complement first is to invert all the bits of data , and

denote them Abar. Next step is to perform “XOR”

operation on Abar(0) with 1’b1, Abar(1) xor Abar(0),

Abar(2) xor Abar(1) and so on, and denote them Axor.

Now scan each bit of Axor until1’b1 arrives, copy those

bits into results and remaining bits will be copied from

Abar.

Fig. 3.2(a) shows xoring operation

Fig. 3.2(b) shows method to find 2’s complement

of 8 bit data

Fig.3.3 Final partial products after applying

2’s complement

IV. EXPERIMENTAL RESULTS

Fig. 3.3 shows final four partial product rows after

combining two above techniques. For comparisons

several multiplier designed were implemented (i.e 8 bit

and 16 bit) by using different approaches. These

multipliers were modeled in verilog HDL and synthesis

by using Xilinx 13.1 and also area and power were

estimated by using Synopsys design compiler.

The implementation results show Dynamic Power,

Hardware Area, and Delay.

Table 2

Experimental Results

Simple

MBE

(8x8

bit)

Proposed

MBE

(8x8 bit)

Simple

MBE

(16x16

bit)

Propose

d

MBE

(16x16

bit)

Maximu

m

combinat

ion-al

delay

21.579 21.104 38.852 38.491

Area

(1 unit =

1 nand

gate

area)

5446.5 4065.35
18,845.7

1

16,164.5

9

Dynamic

power

(mW)

4.0150 2.842 20.255 17.06

No of

slices

91/465

6
108/4656 295/4656 334/4656

Maximu

m

frequenc

y

79.59

MHz

81.38

MHz

53.86

MHz

64.57

MHz

Fig 4.1 Combinational path delay comparison of

8*8, 16*16 MBE and proposed MBE

Fig 4.2 Area comparison of 8*8, 16*16

MBE and proposed MBE

Fig 4.3 Dynamic power comparison of

8x8, 16x16 MBE and proposed MBE.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2562

V. CONCLUSION

This paper mainly deals with the first step of partial

product generation. Here an efficient technique has been

proposed to find 2’s complement and to generate regular

partial products. Experimental results have demonstrated that

the proposed MBE with regular partial product arrays can

achieve significant improvement in area, delay, and power

consumption when compared with conventional multiplier.

ACKNOWLEDGMENT

First of all, I would like to express my gratitude to Ms.

Sakshi, Assistant Professor, Electronics and

Communication Engineering Department, Thapar

University, Patiala for her patient guidance and support

throughout this paper. I am truly very fortunate to have the

opportunity to work with her. I found this guidance to be

extremely valuable.

I am also thankful to our HEAD OF THE

DEPARTMENT, Dr. Rajesh Khanna as well as PG

Coordinator, Dr. KulbirSingh, Associate Professor, of

Electronics and Communication Engineering Department.

I would like to thank entire faculty and staff of Electronics

and Communication Engineering Department and then

friends who devoted their valuable time and helped me in

all possible ways towards successful completion of this

work. I thank all those who have contributed directly or

indirectly to this work.

REFERENCES
[1] M. Kumar and R. Verma, “Disposition (reduction) of (negative)

partial product for Radix 4 Booth’s Algorithm,” in IEEE World

Congress on Information And Communication Technologies, Dec

2011, pp.1169-1174.
[2] S.R. Kuang, J.P. Wang, and C.Y. Guo, “Modified Booth Multipliers

with a regular partial product array,” in IEEE Transaction on circuits

and systems-II: Express Briefs, vol. 56, no. 5, May 2009,pp.404-408.
[3] G. li, H.. Chen, X. Yang “Research on disposal of negative partial

products for booth algorithm,” in Proc. IEEE Conference on

Information Theory and Information Security (ICITIS), Dec 2010, pp
1115-1117.

[4] W.C. Yeh and C.W. Jen, “High-speed booth encoded parallel

multiplier design,” in IEEE Trans. Computer society, vol. 49, no. 7,
Jul. 2000, pp. 692–701.

[5] J.Y. Kang and J.L. Gaudiot “A simple high-speed multiplier design

,”IEEE Trans. Computer society, vol. 55, no. 10, Oct. 2006 ,pp.
1253–1258.

[6] O. Salomon, J.M. Green, and H. Klar, “General algorithms for a

simplified addition of 2’s complement numbers,” in IEEE Solid-
State Circuits, vol. 30, no. 7, Jul. 1995,pp. 839–844.

[7] E. de Angel and E. E. Swartzlander, “Low power parallel

multipliers,” IEEE Workshop on VLSI signal process. IX, Oct 1996,
pp. 199–208.

